A Time Efficient Approach for Detecting Errors in Big Sensor Data on Cloud
Abstract
Big sensor data is prevalent in both industry and scientific research applications where the data is generated with high volume and velocity it is difficult to process using on-hand database management tools or traditional data processing applications. Cloud computing provides a promising platform to support the addressing of this challenge as it provides a flexible stack of massive computing, storage, and software services in a scalable manner at low cost. Some techniques have been developed in recent years for processing sensor data on cloud, such as sensor-cloud. However, these techniques do not provide efficient support on fast detection and locating of errors in big sensor data sets. For fast data error detection in big sensor data sets, in this paper, we develop a novel data error detection approach which exploits the full computation potential of cloud platform and the network feature of WSN. Firstly, a set of sensor data error types are classified and defined. Based on that classification, the network feature of a clustered WSN is introduced and analyzed to support fast error detection and location. Specifically, in our proposed approach, the error detection is based on the scale-free network topology and most of detection operations can be conducted in limited temporal or spatial data blocks instead of a whole big data set. Hence the detection and location process can be dramatically accelerated. Furthermore, the detection and location tasks can be distributed to cloud platform to fully exploit the computation power and massive storage. Through the experiment on our cloud computing platform of U-Cloud, it is demonstrated that our proposed approach can significantly reduce the time for error detection and location in big data sets generated by large scale sensor network systems with acceptable error detecting accuracy.
Error and Abnormality Classification

[image: image1.png]out of data bounds faults

e ey

s orere M re X

data lost faults | spike faults

Algorithm

Error detection and location:
In our algorithm in error detection and localization are not so ideal and it is hard to directly use one MapReduce to solve perfectly.
[image: image2.png]The Standard MapReduce Example:

Function map(String name, String document):

// name: document name

// document: document contents

for each word w in document:

emit (w, 1)

function reduce(String word, Iterator partialCounts):
// word: a word

// partialCounts: a list of aggregated partial counts
sum =0

for each pe in partialCounts:

sum + = Parselnt(pc)

emit (word, sum)

Based on the knowledge for MapReduce and its wide
applications, three technical changes are commonly
adopted to transform the targeting problem for applying
MapReduce on it

[image: image3.png]Original algorithm — > (embedded in) Map
0O/Reduce()

Partition the task flow of algorithm — > Identify
which part of the task flow to generate a MapReduce
job — > MapReduce generated result returns back to
the task flow

Complete MapReduce design — > control flow paralle-
lization/data parallelization.

Existing System

Big data is a collection of data sets so large and complex that it becomes difficult to process with on hand database management systems or traditional data processing applications. It represents the progress of the human cognitive processes, usually includes data sets with sizes beyond the ability of current technology, method and theory to capture, manage, and process the data within a tolerable elapsed time
WSN with cloud can be categorized as a kind of complex network systems. In these complex network systems such as WSN and social network, data abnormality and error become an annoying issue for the real network applications
Some work has been done for big data analysis and error detection in complex networks including intelligence sensors networks. There are also some works related to complex network systems data error detection and debugging with online data processing techniques. Since these techniques were not designed and developed to deal with big data on cloud, they were unable to cope with current dramatic increase of data size. For example, when big data sets are encountered, previous offline methods for error detection and debugging on a single computer may take a long time and lose real time feedback. Because those offline methods are normally based on learning or mining, they often introduce high time cost during the process of data set training and pattern matching.

Disadvantages:

1. No big data analysis and error detection

2. Increase packet loss ratio.

3. Network Failure

Proposed System

Our proposed approach, the error detection is based on the scale-free network topology and most of detection operations can be conducted in limited temporal or spatial data blocks instead of a whole big data set. Hence the detection and location process can be dramatically accelerated. Furthermore, the detection and location tasks can be distributed to cloud platform to fully exploit the computation power and massive storage. Through the experiment on our cloud computing platform of U-Cloud, it is demonstrated that our proposed approach can significantly reduce the time for error detection and location in big data sets generated by large scale sensor network systems with acceptable error detecting accuracy.

We aim to develop a novel error detection approach by exploiting the massive storage, scalability and computation power of cloud to detect errors in big data sets from sensor networks.
Fast detection of data errors in big data with cloud remains challenging. Especially, how to use the computation power of cloud to quickly find and locate errors of nodes in WSN needs to be explored.

Advantages:

1. NodeSide/EdgeSide error detection.
2. Improve Network Performance.
3. Big data analysis and error detection
Future Work
In future, in accordance with error detection for big data sets from sensor network systems on cloud, the issues such as error correction, big data cleaning and recovery will be further explored.
 Modules:
1. Cloud Computing
2. Big Data Processing on Cloud
3. Error Definition and Modeling

 4. Error Detection
Modules Descriptions:
1. Cloud Computing:

Cloud computing infrastructure is becoming popular because it provides an open, flexible, scalable and reconfigurable platform. The proposed error detection approach in this paper will be based on the classification of error types. Specifically, nine types of numerical data abnormalities/errors are listed and introduced in our cloud error detection approach. The defined error model will trigger the error detection process. Compared to previous error detection of sensor network systems, our approach on cloud will be designed and developed by utilizing the massive data processing capability of cloud to enhance error detection speed and real time reaction. In addition, the architecture feature of complex networks will also be analyzed to combine with the cloud computing with a more efficient way. Based on current research literature review, we divide complex network systems into scale-free type and non scale-free type. Sensor network is a kind of scale-free complex network system which matches cloud scalability feature. Our proposed error detection approach on cloud is specifically trimmed for finding errors in big data sets of sensor networks. The main contribution of our proposed detection is to achieve significant time performance improvement in error detection without compromising error detection accuracy.
 2. Big Data Processing On Cloud:
Big data has become a fundamental and critical challenge for modern society. Cloud computing provides an ideal platform for big data storage, dissemination and interpreting with its massive computation power. MapReduce has been widely revised from a batch processing framework into a more incremental one to analyze huge-volume of incremental data on cloud. It is a framework for processing parallelizable problems across big data sets using a large number of computers (nodes), collectively referred to as a cluster in which all computers (nodes) are on the same local network and use similar hardware; or a grid in which the nodes are shared across geographically and administratively distributed systems. It can sort a petabyte of data in only a few hours. The parallelism also provides some possibility of recovering from partial failure of servers or storage during the operation.
 3. Error Definition and Modeling:
[image: image4.png]Definition 1 (node side flat line error). Let r,(n;,), f(ni,t;),
g(ni, 1)) be a time series record from node n;, where i is a time
stamp. If any element = = 8, where & is an effective constant
during time window t,z € f(ni,t;), and g(n;,1) = O,n, is the
data source node, there is a node side flat line error.

Definition 2 (edge side flat line error). Let ry(n;,t;), f(ni, %),
g(ni, 1)) be a time series record from node ni, where i is a time
stamp. If any element © = 8, where & is an effective constant
during time window t,x € f(ni,t,), and glns,1)! = 0,m; is the
data source node, there is an edge side flat line error.

Definition 3 (node side data lost error). Let ri(ni, t:), f(ni,
1), §(n,) be a time series record from node n,, where i is a
time stamp. If f(ny, t;) = null && t; > , ‘7’ is the time dura-
tion from outside application requirement, and if
9(ni,1) = 0,n, is the data source node, the error is a node side
data lost error.

Definition 4 (edge side data lost erro. Let r(ni,t),
f(nist:), g(n, 1) be a time series record from node n;, where i
is a time stamp. If f(ni,t;) = null && 1 > 7, ‘7’ is the time
duration from outside application requirement, and if

[image: image5.png]g(ni,)! = 0,m; is the data source node, the error is an edge side
data lost error.

Definition 5 (node side out of bounds error). Let 7,(n;,t;),
f(nit:), g(n, 1) be a time series record from node ny, where i
is a time stamp. If any element z > 6, € f(ni,t;), 0 is
threshold defined from the application requirement, and if
g(ni, 1) = 0, is the data source node, the error is a node side
out of bound error.

Definition 6 (edge side out of bounds error). Let r,(n;,t;),
f(nits), g(n, 1) be a time series record from node n;, where i
is a time stamp. If any clement z > 6,z € f(nit:), 0 is a
threshold defined from the application requirement and if
g(ni,)! = 0,n; is the data source node, the error is an edge
side out of bound error.

Definition 7 (node side spike error). Let ri(n, t:, f(ni, 1), §
(n, 1)) be a time series record from node n;, where i s a time
stamp. If |f(ni,t,) — fP(ni,t)|/t; > .0 is the acceptable
changing trend, f"(n;,t;) is the predicted time series with an
adopted prediction model, and if g(ni,1) = 0,n; is the data
source node, the error is a node side spike error.

[image: image6.png]Definition 8 (edge side spike error). Let 7, (n;,t;, f(ni,t,), ¢
(n, 1)) be a time series record from node n;, where i is a time
stamp. If |f(ni,ts) — f(nists)|/ti > ¥, ¥ is the acceptable
changing trend, fP(n;,t;) is the predicted time series with an
adopted prediction model, and if g(n;,1)! = 0,n; is the data
source node, the error is an edge side spike error.

4. Error Detection and Localization:
We propose a two-phase approach to conduct the computation required in the whole process of error detection and localization. At the phase of error detection, there are three inputs for the error detection algorithm. The first is the graph of network. The second is the total collected data set D and the third is the defined error patterns p. The output of the error detection algorithm is the error set D’.
After the error pattern matching and error detection, it is important to locate the position and source of the detected error in the original WSN graph G(V, E). The input of the Algorithm 2 is the original graph of a scale-free network G(V, E), and an error data D from Algorithm 1. The output of the algorithm 2 is G’(V’, E’) which is the subset of the G to indicate the error location and source.
[image: image7.png]. Cluster based error detection strategy on cloud.

HARDWARE & SOFTWARE REQUIREMENTS:

 HARDWARE REQUIREMENTS:

System

:
Pentium IV 2.4 GHz.

Hard Disk

:
40 GB.

Floppy Drive

:
1.44 Mb.

Monitor

:
15 VGA Color.

Mouse

:
Logitech.

Ram

:
512 MB.

 SOFTWARE REQUIREMENTS:

Operating system
:
Windows XP Professional.

Coding Language
:
C#.NET

