
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 1

Key-Aggregate Searchable Encryption (KASE)
for Group Data Sharing via Cloud Storage

Baojiang Cui, Zheli Liu∗ and Lingyu Wang

Abstract—The capability of selectively sharing encrypted data with different users via public cloud storage may greatly ease
security concerns over inadvertent data leaks in the cloud. A key challenge to designing such encryption schemes lies in the
efficient management of encryption keys. The desired flexibility of sharing any group of selected documents with any group of
users demands different encryption keys to be used for different documents. However, this also implies the necessity of securely
distributing to users a large number of keys for both encryption and search, and those users will have to securely store the
received keys, and submit an equally large number of keyword trapdoors to the cloud in order to perform search over the shared
data. The implied need for secure communication, storage, and complexity clearly renders the approach impractical. In this
paper, we address this practical problem, which is largely neglected in the literature, by proposing the novel concept of key-
aggregate searchable encryption (KASE) and instantiating the concept through a concrete KASE scheme, in which a data owner
only needs to distribute a single key to a user for sharing a large number of documents, and the user only needs to submit a
single trapdoor to the cloud for querying the shared documents. The security analysis and performance evaluation both confirm
that our proposed schemes are provably secure and practically efficient.

Index Terms—Searchable encryption, data sharing, cloud storage, data privacy

F

1 INTRODUCTION

Cloud storage has emerged as a promising solution
for providing ubiquitous, convenient, and on-demand
accesses to large amounts of data shared over the
Internet. Today, millions of users are sharing personal
data, such as photos and videos, with their friends
through social network applications based on cloud
storage on a daily basis. Business users are also being
attracted by cloud storage due to its numerous ben-
efits, including lower cost, greater agility, and better
resource utilization.

However, while enjoying the convenience of shar-
ing data via cloud storage, users are also increasingly
concerned about inadvertent data leaks in the cloud.
Such data leaks, caused by a malicious adversary or
a misbehaving cloud operator, can usually lead to
serious breaches of personal privacy or business se-
crets (e.g., the recent high profile incident of celebrity
photos being leaked in iCloud). To address users’
concerns over potential data leaks in cloud storage,
a common approach is for the data owner to encrypt

• B. Cui is with School of Computer Science, Beijing University of Posts
and Telecommunications, National Engineering Laboratory for Mobile
Network Security, China.
Email:cuibj@bupt.edu.cn.
Z. Liu is with the College of Computer and Control Engineering,
Nankai University, China, 300071.
Email: liuzheli@nankai.edu.cn.
L. Wang is with Concordia Institute for Information Systems Engi-
neering, Concordia University, Montreal, Canada.
Email:wang@ciise.concordia.ca.

• Z. Liu and B. Cui contribute to this work equally.
Corresponding authors: liuzheli@nankai.edu.cn

all the data before uploading them to the cloud, such
that later the encrypted data may be retrieved and de-
crypted by those who have the decryption keys. Such
a cloud storage is often called the cryptographic cloud
storage [6]. However, the encryption of data makes it
challenging for users to search and then selectively
retrieve only the data containing given keywords. A
common solution is to employ a searchable encryption
(SE) scheme in which the data owner is required to
encrypt potential keywords and upload them to the
cloud together with encrypted data, such that, for
retrieving data matching a keyword, the user will
send the corresponding keyword trapdoor to the cloud
for performing search over the encrypted data.

Although combining a searchable encryption
scheme with cryptographic cloud storage can
achieve the basic security requirements of a cloud
storage, implementing such a system for large scale
applications involving millions of users and billions
of files may still be hindered by practical issues
involving the efficient management of encryption
keys, which, to the best of our knowledge, are largely
ignored in the literature. First of all, the need for
selectively sharing encrypted data with different
users (e.g., sharing a photo with certain friends in
a social network application, or sharing a business
document with certain colleagues on a cloud drive)
usually demands different encryption keys to be
used for different files. However, this implies the
number of keys that need to be distributed to users,
both for them to search over the encrypted files
and to decrypt the files, will be proportional to the
number of such files. Such a large number of keys

IEEE TRANSACTIONS ON COMPUTERS VOL: PP NO: 99 YEAR 2015

Home17
Highlight

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 2

must not only be distributed to users via secure
channels, but also be securely stored and managed
by the users in their devices. In addition, a large
number of trapdoors must be generated by users
and submitted to the cloud in order to perform a
keyword search over many files. The implied need for
secure communication, storage, and computational
complexity may render such a system inefficient and
impractical.

In this paper, we address this challenge by propos-
ing the novel concept of key-aggregate searchable encryp-
tion (KASE), and instantiating the concept through a
concrete KASE scheme. The proposed KASE scheme
applies to any cloud storage that supports the search-
able group data sharing functionality, which means any
user may selectively share a group of selected files
with a group of selected users, while allowing the
latter to perform keyword search over the former. To
support searchable group data sharing the main re-
quirements for efficient key management are twofold.
First, a data owner only needs to distribute a single
aggregate key (instead of a group of keys) to a user for
sharing any number of files. Second, the user only needs to
submit a single aggregate trapdoor (instead of a group of
trapdoors) to the cloud for performing keyword search over
any number of shared files. To the best of our knowledge,
the KASE scheme proposed in this paper is the first
known scheme that can satisfy both requirements (the
key-aggregate cryptosystem [4], which has inspired
our work, can satisfy the first requirement but not the
second).

Contributions. More specifically, our main contribu-
tions are as follows.

1) We first define a general framework of key-
aggregate searchable encryption (KASE) com-
posed of seven polynomial algorithms for se-
curity parameter setup, key generation, encryp-
tion, key extraction, trapdoor generation, trap-
door adjustment, and trapdoor testing. We then
describe both functional and security require-
ments for designing a valid KASE scheme.

2) We then instantiate the KASE framework by
designing a concrete KASE scheme. After pro-
viding detailed constructions for the seven algo-
rithms, we analyze the efficiency of the scheme,
and establish its security through detailed anal-
ysis.

3) We discuss various practical issues in building
an actual group data sharing system based on
the proposed KASE scheme, and evaluate its
performance. The evaluation confirms our sys-
tem can meet the performance requirements of
practical applications.

The rest of the paper is organized as follows. First,
we review some background knowlege in Section 2.
We then define the general KASE framework in Sec-
tion 3. We describe related work in Section 4. We

design a concrete KASE scheme and analyze its ef-
ficiency and security in Section 5. We implement and
evaluate a KASE-based group data sharing system in
Section 6. Finally, we conclude the paper in Section 7.

2 PRELIMINARIES

In this section, we review some basic assumptions
and cryptology concepts which will be needed later
in this paper. In the rest of our discussions, let G and
G1 be two cyclic groups of prime order p, and g be
a generator of G. Moreover, let doc be the document
to be encrypted, k the searchable encryption key, and
Tr the trapdoor for keyword search.

2.1 Complexity Assumption
2.1.1 Bilinear Map

A bilinear map is a map e : G × G → G1 with the
following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z∗p , we have
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1.
3. Computability: there is an efficient algorithm to

compute e(u, v) for any u, v ∈ G.

2.1.2 Bilinear Diffie-Hellman Exponent Assumption
The bilinear Diffie-Hellman exponent (BDHE) as-

sumption has been widely used to prove the security
of some broadcast encryption (BE) schemes (e.g., [27]).

The l-BDHE problem in G is stated as follows.
Given a vector of 2l + 1 elements (h, g, gα, g(α2), · ·
·, g(αl), g(αl+2), · · ·, g(α2l)) ∈ (G∗)2l+1 as input, output
e(g, h)(αl+1) ∈ G1.

For convenience, we use gi to denote gi = g(αi) ∈ G.
Note that the input vector is missing the term gl+1

(i.e., g(αl+1)) such that the bilinear map seems to be of
little help in computing the required e(g, h)(αl+1).

An algorithm A has advantage ε in solving l-BDHE
in G if Pr[A(h, g, g1, ···, gl, gl+2, ···, g2l) = e(gl+1, h)] ≥ ε,
where the probability is over the random choice of
generators g, h in G, the random choice of α in Zp,
and the random bits used by A.

Definition 1. The (l, ε)−BDHE assumption holds in G
if no algorithm has advantage more than ε in solving the
l−BDHE problem in G.

2.2 Broadcast Encryption
In a broadcast encryption (BE) scheme, a broadcast-

er encrypts a message for some subset S of users who
are listening on a broadcast channel. Any user in S
can use his/her private key to decrypt the broadcast.
A BE scheme can be described as a tuple of three
polynomial-time algorithms BE = (Setup, Encrypt, De-
crypt) as follows:
• Setup(1λ, n): this algorithm is run by the system

to set up the scheme. It takes as input a security

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 3

parameter 1λ and the number of receivers n,
outputs n private keys d1, · · ·, dn and a public
key pk.

• Encrypt(pk, S): this algorithm is run by the broad-
caster to encrypt a message for a subset of users.
It takes as input a public key pk and a subset
of users S ⊆ {1, · · ·, n}, outputs a pair (Hdr,K),
where Hdr is called the header and K is a
message encryption key which is encapsulated in
Hdr. We will often refer to Hdr as the broadcast
ciphertext. For a concrete message, it will be
encrypted by K and broadcasted to the users in
S.

• Decrypt(pk, S, i, di, Hdr): this algorithm is run by
the user to decrypt the received messages. It takes
as input a public key pk, a subset of users S ⊆
{1, · · ·, n}, a user id i ∈ {1, · · ·, n}, the private
key di for user i and a header Hdr, outputs the
message encryption key K or the failure symbol
⊥. The K will be used to decrypt the received
messages.

To ensure the system to be correct, it is required
that, for all S ⊆ {1, · · ·, n} and all i ∈ S, if (pk, (d1, · ·
·, dn) R←−Setup(1λ, n) and (Hdr, K) R←−Encrypt(pk, S)),
then Decrypt(pk, S, i, di, Hdr)=K.

2.3 Searchable Encryption

Generally speaking, searchable encryption schemes
fall into two categories, i.e., searchable symmetric
encryption (SSE) and public key encryption with
keyword search (PEKS). Both SSE and PEKS can be
described as the tuple SE= (Setup, Encrypt, Trapdoor,
Test):

• Setup(1λ): this algorithm is run by the owner to
set up the scheme. It takes as input a security
parameter 1λ, and outputs the necessary keys.

• Encrypt(k,m): this algorithm is run by the owner
to encrypt the data and generate its keyword
ciphertexts. It takes as input the data m, owner’s
necessary keys including searchable encryption
key k and data encryption key, outputs data
ciphertext and keyword ciphertexts Cm.

• Trpdr(k,w): this algorithm is run by a user to
generate a trapdoor Tr for a keyword w using
key k.

• Test(Tr, Cm): this algorithm is run by the cloud
server to perform a keyword search over encrypt-
ed data. It takes as input trapdoor Tr and the
keyword ciphertexts Cm, outputs whether Cm
contains the specified keyword.

For correctness, it is required that, for a message m
containing keyword w and a searchable encryption
key k, if (Cm←Encrypt(k,m) and Tr←Trpdr(k,w)),
then Test(Tr, Cm)=true.

3 THE KEY-AGGREGATE SEARCHABLE EN-
CRYPTION (KASE) FRAMEWORK

In this section, we first describe the general prob-
lem, and then define a generic framework for key-
aggregate searchable encryption (KASE) and provide
requirements for designing a valid KASE scheme.

3.1 Problem Statement
Consider a scenario where two employees of a

company would like to share some confidential busi-
ness data using a public cloud storage service (e.g.,
dropbox or syncplicity). For instance, Alice wants to
upload a large collection of financial documents to
the cloud storage, which are meant for the directors
of different departments to review. Suppose those
documents contain highly sensitive information that
should only be accessed by authorised users, and
Bob is one of the directors and is thus authorized
to view documents related to his department. Due to
concerns about potential data leakage in the cloud,
Alice encrypts these documents with different keys,
and generates keyword ciphertexts based on depart-
ment names, before uploading to the cloud storage.
Alice then uploads and shares those documents with
the directors using the sharing functionality of the
cloud storage. In order for Bob to view the documents
related to his department, Alice must delegate to
Bob the rights both for keyword search over those
documents, and for decryption of documents related
to Bob’s department.

With a traditional approach, Alice must securely
send all the searchable encryption keys to Bob. After
receiving these keys, Bob must store them securely,
and then he must generate all the keyword trapdoors
using these keys in order to perform a keyword
search. As shown in Fig.1(a), Alice is assumed to
have a private document set {doci}ni=1, and for each
document doci, a searchable encryption key ki is used.
Without loss of generality, we suppose Alice wants to
share m documents {doci}mi=1 with Bob. In this case,
Alice must send all the searchable encryption keys
{ki}mi=1 to Bob. Then, when Bob wants to retrieve
documents containing a keyword w, he must generate
keyword trapdoor Tri for each document doci with
key ki and submit all the trapdoors {Tri}mi=1 to the
cloud server. When m is sufficiently large, the key
distribution and storage as well as the trapdoor gener-
ation may become too expensive for Bob’s client-side
device, which basically defies the purpose of using
cloud storage.

In this paper, we propose the novel approach of
key-aggregate searchable encryption (KASE) as a better
solution, as depicted in Fig.1(b). , in KASE, Alice only
needs to distribute a single aggregate key, instead
of {ki}mi=1 for sharing m documents with Bob, and
Bob only needs to submit a single aggregate trapdoor,
instead of {Tri}mi=1, to the cloud server. The cloud

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 4

Alice

……

Upload Files

Cloud k1

Bob

1: Keys {k1, k2, k3, ……, km}

TrmTr1

2: Keyword
Trapdoors

k2 k3 kn

……

(a) Traditional approach

Alice

……

Upload Files

Cloudk1

Bob

1: Aggregate Key
 for {k1, k2, k3, ……, km}

Tr

k2 k3 kn

2: Aggregate Trapdoor
 for {doc1, ……, docm}

(b) Key-Aggregate Searchable Encryption

Fig. 1. keyword search in group data sharing system.

server can use this aggregate trapdoor and some
public information to perform keyword search and
return the result to Bob. Therefore, in KASE, the
delegation of keyword search right can be achieved
by sharing the single aggregate key. We note that
the delegation of decryption rights can be achieved
using the key-aggregate encryption approach recently
proposed in [4], but it remains an open problem to
delegate the keyword search rights together with the
decryption rights, which is the subject topic of this
paper. To summarize, the problem of constructing a
KASE scheme can be stated as:

“To design a key-aggregate searchable encryption scheme
under which any subset of the keyword ciphertexts (pro-
duced by the SE.Encrypt algorithm to be introduced in Sec-
tion 5) from any set of documents is searchable (performed
by the SE.Test algorithm) with a constant-size trapdoor
(produced by SE.Trpdr algorithm) generated by a constant-
size aggregate key.”

3.2 The KASE Framework

The KASE framework is composed of seven algo-
rithms. Specifically, to set up the scheme, the cloud
server would generate public parameters of the sys-
tem through the Setup algorithm, and these public
parameters can be reused by different data owners to
share their files. For each data owner, he/she should
produce a public/master-secret key pair through the
Keygen algorithm. Keywords of each document can
be encrypted via the Encrypt algorithm with the u-
nique searchable encryption key. Then, the data owner
can use the master-secret key to generate an aggregate
searchable encryption key for a group of selected doc-
uments via the Extract algorithm. The aggregate key
can be distributed securely (e.g., via secure e-mails
or secure devices) to authorized users who need to
access those documents. After that, as shown in Fig.2,
an authorized user can produce a keyword trapdoor
via the Trapdoor algorithm using this aggregate key,
and submit the trapdoor to the cloud. After receiving
the trapdoor, to perform the keyword search over the
specified set of documents, the cloud server will run

……

Cloud

Bob

Tr

Tr1

Adjust

Trm

……

…

Test

Test

Alice

Aggregate Key
 for {k1, k2, k3, ……, km}

k1 km kn

Fig. 2. Framework of key-aggregate searchable en-
cryption.

the Adjust algorithm to generate the right trapdoor
for each document, and then run the Test algorithm
to test whether the document contains the keyword.
This framework is summarized in the following.

• Setup(1λ, n): this algorithm is run by the cloud
service provider to set up the scheme. On input of a
security parameter 1λ and the maximum possible
number n of documents which belongs to a data
owner, it outputs the public system parameter
params.

• Keygen: this algorithm is run by the data owner
to generate a random key pair (pk,msk).

• Encrypt(pk, i): this algorithm is run by the data
owner to encrypt the i-th document and generate
its keywords’ ciphertexts. For each document,
this algorithm will create a delta ∆i for its search-
able encryption key ki. On input of the owner’s
public key pk and the file index i, this algorithm
outputs data ciphertext and keyword ciphertexts
Ci.

• Extract(msk, S): this algorithm is run by the
data owner to generate an aggregate searchable
encryption key for delegating the keyword search
right for a certain set of documents to other users.
It takes as input the owner’s master-secret key

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 5

msk and a set S which contains the indices of
documents, then outputs the aggregate key kagg .

• Trapdoor(kagg , w): this algorithm is run by the
user who has the aggregate key to perform a
search. It takes as input the aggregate searchable
encryption key kagg and a keyword w, then out-
puts only one trapdoor Tr.

• Adjust(params, i, S, Tr): this algorithm is run
by cloud server to adjust the aggregate trapdoor
to generate the right trapdoor for each different
document. It takes as input the system public pa-
rameters params, the set S of documents’ indices,
the index i of target document and the aggregate
trapdoor Tr, then outputs each trapdoor Tri for
the i-th target document in S.

• Test(Tri, i): this algorithm is run by the cloud
server to perform keyword search over an en-
crypted document. It takes as input the trapdoor
Tri and the document index i, then outputs true
or false to denote whether the document doci
contains the keyword w.

3.3 Requirements for Designing KASE Schemes

The KASE framework introduced in the previous
section provides general guidance to designing a
KASE scheme. However, a valid KASE scheme must
also satisfy several functional and security require-
ments, as stated in the following.

A KASE scheme should satisfy three functional
requirements as follows.

• Compactness. This requirement demands a
KASE scheme to ensure the size of the aggregate
key to be independent of the number of files to
be shared. Formally, for a set of keys {ki}i∈S ,
it requires that kagg←Extract(msk, S). How to
aggregate the set of keys into a single key without
invalidating later steps is a key challenge in designing
KASE schemes.

• Searchability. This requirement is central to all
KASE schemes since it enables users to generate
desired trapdoors for any given keyword for
searching encrypted documents. In another word,
reducing the number of keys should preserve the
search capability. Formally, for each document
containing the keyword w with index i ∈ S, the
searchability requires that if (Tr=Trapdoor(kagg ,
w) and Tri←Adjust(params, i, S, Tr)), then
Test(Tri, i)=true.

• Delegation. The main goal of KASE is to delegate
the keyword search right to a user through an
aggregate key. To ensure any user with the delegated
key can perform keyword search, this requirement
requires that the inputs of the adjustment algorithm
must not be public, i.e., these inputs should not rely
on any user’s private information. This is the second
key challenge in designing KASE schemes.

In addition, any KASE scheme should also satisfy
two security requirements as follows.
• Controlled searching. Meaning that the attackers

cannot search for an arbitrary word without the
data owner’s authorization. That is, the attacker
cannot perform keyword search over the doc-
uments which are not relevant to the known
aggregate key, and he/she cannot generate new
aggregate searchable encryption keys for other set
of documents from the known keys.

• Query privacy. Meaning that the attackers cannot
determine the keyword used in a query, apart
from the information that can be acquired via
observation and the information derived from it.
That is, the user may ask an untrusted cloud
server to search for a sensitive word without
revealing the word to the server.

4 RELATED WORK

Before we introduce our KASE scheme, this section
first reviews several categories of existing solutions
and explain their relationships to our work.

4.1 Multi-user Searchable Encryption
There is a rich literature on searchable encryption,

including SSE schemes [5]–[8] and PEKS schemes
[9]–[15]. In contrast to those existing work, in the
context of cloud storage, keyword search under the
multi-tenancy setting is a more common scenario. In
such a scenario, the data owner would like to share
a document with a group of authorized users, and
each user who has the access right can provide a
trapdoor to perform the keyword search over the
shared document, namely, the “multi-user searchable
encryption” (MUSE) scenario.

Some recent work [6], [13]–[15], [19] focus to such
a MUSE scenario, although they all adopt single-key
combined with access control to achieve the goal. In
[6], [19], MUSE schemes are constructed by sharing
the document’s searchable encryption key with all
users who can access it, and broadcast encryption
is used to achieve coarse-grained access control. In
[13]–[18], attribute based encryption (ABE) is applied
to achieve fine-grained access control aware keyword
search. As a result, in MUSE, the main problem is
how to control which users can access which docu-
ments, whereas how to reduce the number of shared
keys and trapdoors is not considered. Key aggregate
searchable encryption can provide the solution for
the latter, and it can make MUSE more efficient and
practical.

4.2 Multi-Key Searchable Encryption
In the case of a multi-user application, considering

that the number of trapdoors is proportional to the
number of documents to search over (if the user

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 6

Cloud

Tr

Adjust

Trm

…………

Test

k1 km kn

k1 km

∆ ∆

ukB

Tr1 ……

Bob

ukB, k1 ukB, km

Fig. 3. Multi-Key Searchable Encryption.

provides to the server a keyword trapdoor under
each key with which a matching document might be
encrypted), Popa [28] firstly introduces the concept
of multi-key searchable encryption (MKSE) and puts
forward the first feasible scheme in 2013. MKSE al-
lows a user to provide a single keyword trapdoor
to the server, but still allows the server to search
for that trapdoor’s keyword in documents encrypted
with different keys. This might sound very similar to
the goal of KASE, but these are in fact two completely
different concepts. The goal of KASE is to delegate
the keyword search right to any user by distributing
the aggregate key to him/her in a group data sharing
system, whereas the goal of MKSE is to ensure the
cloud server can perform keyword search with one
trapdoor over different documents owing to a user.

More specifically, denote by uki the key of user
i. Suppose a user, say Bob (with key ukB), has m
encrypted documents on the cloud server, and each
is encrypted under a key kj for j = {1, · · ·,m}. To
allow the cloud server to adjust the trapdoor for each
document with index j, Bob stores on the cloud server
a public information called delta (denoted as ∆ukB ,kj)
which is relevant to both ukB and kj . As shown in Fig.
3, when Bob wants to search for a word w over all the
documents, he will use ukB to compute a trapdoor
for the word w and submit it to the cloud server. The
cloud server can use ∆ukB ,kj to convert a keyword
trapdoor under key ukB to a keyword trapdoor under
kj ; this process is called adjust. In such a way, the
cloud server can obtain trapdoors for word w under
k1, ···, km while only receiving one trapdoor from Bob,
and then perform a traditional single-key search with
the new trapdoors.

This approach of MKSE inspires us to focus on
the problem of keyword search over a group of
shared documents from the same user in the multi-
user applications, and the adjust process in MKSE
also provides a general approach to perform keyword
search over a group of documents with only one
trapdoor. However, the adjust process of MKSE needs
a delta generated from both user’s key and SE key
of the document, so it does not directly apply to the

design of a concrete KASE scheme.

4.3 Key-aggregate Encryption for Data Sharing

Data sharing systems based on cloud storage have
attracted much attention recently [1]–[4]. In particular,
Chu et al. [4] consider how to reduce the number
of distributed data encryption keys. To share several
documents with different encryption keys with the
same user, the data owner will need to distribute all
such keys to him/her in a traditional approach which
is usually impractical. Aiming at this challenge, a key-
aggregate Encryption (KAE) scheme for data sharing
is proposed to generate an aggregate key for the user
to decrypt all the documents.

To allow a set of documents encrypted by different
keys to be decrypted with a single aggregate key, user
could encrypt a message not only under a public-key,
but also under the identifier of each document. The
construction is inspired by the broadcast encryption
scheme [27]. In this construction, the data owner can
be regarded as the broadcaster, who has public key
pk and master-secret key msk; each document with
identifier i can be regarded as a receiver listening to
the broadcast channel, and a public information used
in decryption is designed to be relevant to both the
owner’s msk and the encryption key; the message
encryption process is similar to data encryption using
symmetric encryption in BE, but the key aggregation
and data decryption can be simply regarded as the
further mathematical transformation of BE.Encrypt
algorithm and BE.Decrypt algorithm respectively.

The scheme [4] allows efficiently delegating the
decryption rights to other users, and is the main
inspiration of our study, but it does not support any
search over the encrypted data. In the cloud envi-
ronment, to achieve the goal of privacy-preserving
data sharing, keyword search is a necessary require-
ment. Fortunately, the KAE provides insights to the
design of a KASE scheme, although our scheme will
require a more complex mathematical transformation
to support keyword ciphertext encryption, trapdoor
generation and keyword matching.

5 THE PROPOSED SCHEME

5.1 Overview

The design of our KASE scheme draws its insights
from both the multi-key searchable encryption scheme
[28] and the key-aggregate data sharing scheme [4].
Specifically, in order to create an aggregate searchable
encryption key instead of many independent keys,
we adapt the idea presented in [4]. Each searchable
encryption key is associated with a particular index
of document, and the aggregate key is created by
embedding the owner’s master-secret key into the
product of public keys associated with the documents.
In order to implement keyword search over different

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 7

documents using the aggregate trapdoor, we employ
a similar process as in [28]. The cloud server can use
this process to produce an adjusted trapdoor for every
document.

5.2 Description of the Scheme
Based on the framework described in section 3.2,

we propose a concrete KASE scheme as follows.
1) Setup(1λ, n): the cloud server will use this algo-

rithm to initialize system parameters as follows:
• Generate a bilinear map group system B=(p,
G, G1, e(·, ·)), where p is the order of G and
2λ ≤ p ≤ 2λ+1.

• Set n as the maximum possible number of
documents which belongs to a data owner.

• Pick a random generator g ∈ G and a ran-
dom α ∈ Zp, and computes gi = g(αi) ∈ G
for i = {1, 2, · · ·, n, n+ 2, · · ·, 2n}.

• Select a one-way hash function H : {0, 1}∗ →
G.

Finally, cloud server publishes the system param-
eters params = (B, PubK, H), where PubK =
(g, g1, · · ·, gn, gn+2, ..., g2n) ∈ G2n+1.

2) Keygen: data owner uses this algorithm to gen-
erate his/her key pair. It picks a random γ ∈ Zp,
and outputs:

pk = v = gγ ,msk = γ.
3) Encrypt(pk, i): data owner uses this algorithm

to encrypt data and generate its keyword ci-
phertexts when uploading the i-th document. To
generate the keyword ciphertexts, this algorithm
takes as input the file index i ∈ {1, ..., n}, and:
• randomly picks a t ∈ Zp as the searchable

encryption key ki of this document.
• generates a delta ∆i for ki by computing:

c1 = gt, c2 = (v · gi)t
• for a keyword w, outputs its ciphertext cw

as:
cw = e(g,H(w))t/e(g1, gn)t.

Note that c1, c2 are public and can be stored in
the cloud server.

4) Extract(msk, S): data owner uses this algorithm
to generate an aggregate searchable encryption
key. For any subset S ⊆ {1, ···, n} which contains
the indices of documents, this algorithm takes
as input the owner’s master-secret key msk and
outputs the aggregate key kagg by computing:

kagg = Πj∈sg
γ
n+1−j .

To delegate the keyword search right to a user,
data owner will send kagg and the set S to the
user.

5) Trapdoor(kagg , w): the user uses this algorithm
to generate the trapdoor to perform keyword
search. For all documents which are relevant to
the aggregate key kagg , this algorithm generates
the only one trapdoor Tr for the keyword w by
computing:

Tr = kagg ·H(w)
Then, the user sends (Tr, S) to the cloud server.

6) Adjust(params, i, S, Tr): the cloud server uses
this algorithm to produce the right trapdoor. For
each document in the set S, this algorithm takes
as input the system public parameters params,
the document index i ∈ S and the aggregate
trapdoor Tr, outputs the right trapdoor Tri by
computing:

Tri = Tr ·Πj∈s,j 6=ign+1−j+i
Then, the cloud server will use Test algorithm
to finish the keyword search.

7) Test(Tri, i): the cloud server uses this algorithm
to perform keyword search over the i-th doc-
ument. For the i-th document, this algorithm
takes as input the adjusted trapdoor Tri, the
∆i=(c1, c2) relevant to its searchable encryption
ki and the subset S, outputs true or false by
judging:

cw
?

== e(Tri, c1)/e(pub, c2)
where pub = Πj∈sgn+1−j . Note that for efficien-
cy consideration, the pub for the set S can be
computed only once.

Remark. If there is only one element in the subset
S, the above scheme will be a concrete public key
encryption with keyword search scheme, in which the
Adjust algorithm will not work.

5.3 Efficiency
In terms of efficiency, our scheme clearly achieves

constant-size keyword ciphertext, trapdoor and aggre-
gate keys. In addition, we should point out that:

1) the set S, which includes the indices of shared
documents, has a linear size in the number of
documents associated with the aggregate key.
However, this does not affect the usefulness of
the data sharing system, because the content of
S can be safely stored in the cloud server (more
details will be provided in section 5.5), such that
there is no need to submit them to the cloud
server when submitting the trapdoor.

2) the public system parameters PubK is O(n) in
size, which is linear in the maximum possi-
ble number of documents belonging to a data
owner, but not dependent on the number of
documents stored in the cloud server, and hence
this will not affect the system’s practicality.

5.4 Security Analysis
To analyze the security of our scheme, and in

particular show that the scheme satisfies the security
requirements given in Section 3.3, we assume that
the public cloud is “honest-but-curious”. That is, the
cloud server will only provide legitimate services
according to pre-defined schemes, although it may try
to recover secret information based on its knowledge.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 8

We also assume that the authorized users may try
to access data either within or out of the scopes of
their privileges. Moreover, communication channels
involving the public cloud are assumed to be insecure.

Based on the above considerations, we will prove
the security of our scheme in terms of controlled
searching and query privacy.

Theorem 1. The proposed scheme supports controlled
searching.

Proof: Theorem 1 requires that any user with the
aggregate key can perform a keyword search over
documents in the set S, but he cannot do it over the
documents outside this set. He also cannot generate
other aggregate searchable encryption keys for a new
set S′ from the known one.Theorem 1 can be deduced
from the following lemmas:

Lemma 1. Each user who has the aggregate key can
perform a successful keyword search.

Proof: Lemma 1 is equivalent to the correctness of
the proposed scheme. After receiving the submitted
single trapdoor Tr, the cloud server can adjust Tr to
generate a desired trapdoor Tri for the i-th document
in the S, and then execute KASE.Test algorithm to
perform keyword search. For correctness, we can see
that:

e(Tri, c1)/e(pub, c2)

=
e(kagg ·Πj∈s,j 6=ign+1−j+i ·H(w), gt)

e(Πj∈sgn+1−j , (v · gi)t)

=
e(kagg, g

t) · e(Πj∈s,j 6=ign+1−j+i ·H(w), gt)

e(Πj∈sgn+1−j , (v · gi)t)

=
e(kagg, g

t) · e(Πj∈s,j 6=ign+1−j+i ·H(w), gt)

e(Πj∈sgn+1−j , gγ
t) · e(Πj∈sgn+1−j , (gi)t)

=
e(Πj∈s,j 6=ign+1−j+i ·H(w), gt)

e(Πj∈sgn+1−j , (gi)t)

=
e(Πj∈s,j 6=ign+1−j+i, g

t) · e(H(w), gt)

e(Πj∈sgn+1−j , (gi)t)

=
e(Πj∈s,j 6=ign+1−j+i, g

t) · e(H(w), gt)

e(Πj∈sgn+1−j+i, gt)

=
e(H(w), gt) · e(Πj∈s,j 6=ign+1−j+i, g

t)

e(Πj∈sgn+1−j+i, gt)

=
e(H(w), gt) · e(Πj∈sgn+1−j+i,g

t)
e(gn+1,gt)

e(Πj∈sgn+1−j+i, gt)

=
e(H(w), gt)

e(gn+1, gt)
=
e(H(w), g)t

e(g1, gn)t

= cw (1)

So, the user with the aggregate key can perform a
successful keyword search.

Lemma 2. Even when the cloud server colludes with a
malicious authorized user, they are unable to perform a
keyword search over any document not in the scope of the
user’s aggregate key.

Proof: In the case of collusion, an attacker A may
have the knowledge of both a curious cloud server
and a malicious authorized user. This kind of attacker
may try to perform keyword search over a document
not in the scope of his/her aggregate key. From the
Equation 1, we can see that if pub is generated by a
wrong set S′, the expression e(kagg, g

t) will be equal
to the expression e(pub, vt) (that is e(Πj∈sgn+1−j , g

γt

)),
and they cannot be canceled out of the equation. So,
the pub must be computed by the same set S of the
aggregate key. Based on the above-mentioned fact,
after receiving the single trapdoor Tr, the attacker
may take a target set S′ as the input of KASE.Adjust
algorithm to generate the adjusted trapdoor, but for
the reason that pub must be computed by the set S,
such that the KASE.Test algorithm will output false
for any document with index i /∈ S.

Lemma 3. An attacker is unable to produce the new
aggregate key for any new set of documents from the known
aggregate key.

Proof: A malicious authorized user A who owns
an aggregate key kagg of a set of documents S from
a data owner, may try to generate a new aggregate
key for a new set S′ of the same data owner. To
generate the new key, A should know the value of
gγn+1−j for any j ∈ S′. Although A has known the
kagg = Πj∈sg

γ
n+1−j , he cannot get each multiplier from

the product, and each multiplier is protected by the
owner’s master-secret key γ, so that A is unable to
achieve his/her goal.

Theorem 2. The proposed scheme can achieve the goal of
query privacy.

Proof: The attackers may obtain some information
to launch an attack. For example, the curious cloud
server can obtain the stored keyword ciphertexts, the
∆i associated with the SE key of i-th document,
the submitted trapdoor, and so on. The malicious
authorized user, say Tom, can have an aggregate key
kagg and the ability to perform keyword search over a
set of documents of Alice. However, even if they can
obtain these information, our scheme can be proved
to achieve the goal of query privacy. The result of
Theorem 2 can be derived from following lemmas:

Lemma 4. An attacker is unable to determine a keyword
in a query from the submitted trapdoor.

Proof: Assume attacker A wants to determine
a keyword in a query after getting the submitted
trapdoor Tr=kagg ·H(w), he will succeed only when he
can guess the aggregate key kagg . In this case, A can
know 1) the system parameters params=(B, PubK),
where PubK = (g, g1, · · ·, gn, gn+2, · · ·, g2n) ∈ G2n+1; 2)
the document set S. However, to compute the kagg ,
for each j ∈ S, the attacker A must compute the
gγn+1−j . Because γ is the data owner’s master-secret
key, which must be kept secret, A can only have a

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 9

negligible probability to get it. So, the attacker cannot
launch a successful attack in this case.

Lemma 5. An attacker is unable to determine a keyword
in a document from the stored keyword ciphertexts and the
related public information.

Proof: The curious cloud server A may try to
learn something from the stored encrypted data. With
the knowledge of PubK = (g, g1, · · ·, gn, gn+2, · ·
·, g2n) ∈ G2n+1, c1 = gt, c2 = (gγ · gi)t and cw =
e(g,H(w))t/e(g1, gn)t, A may try to launch two kinds
of attacks as follows:

1) Retrieve the value of t from the known c1 or c2.
However, the discrete logarithm problem means
A cannot compute the value of t in this case.

2) Compute the value of e(g1, gn)t. Notice that A
can get the value of e(g,H(w))t by comput-
ing e(c1, H(w)), so when he gets the value of
e(g1, gn)t, he will determine whether keyword
w is in the cw of the traget document. To obtain
e(g1, gn)t, A will compute e(c1, gn+1). However,
because PubK is missing the term gn+1 = ga

n+1

,
the attacker A cannot finish this computation. In
fact, this result is ensured by the assumption of
the intractability of BDHE problem.

As a result, an attacker cannot learn the content from
the stored information.

Lemma 6. An attacker is unable to determine a keyword
in a query from the Adjust algorithm.

Proof: For a submitted single trapdoor Tr=kagg ·
H(w), the KASE.Adjust algorithm running in cloud
server only involves a product of some public in-
formation, i.e., Tri = Tr · Πj∈s,j 6=ign+1−j+i. Because
multipliers are all public, this algorithm provides no
help for an attacker to determine a keyword in this
trapdoor. So, a successful attack cannot be launched
in this case.

5.5 A Concrete Group Data Sharing System

When constructing a practical group data sharing
system, it is important to reduce the number of keys
belonging to a user. In this subsection, we will intro-
duce how to build such a system based on the KASE
and KAE schemes with the same public parameters.

We consider a group data sharing system without
using any private cloud, but instead based on widely
available public cloud services, such as Dropbox or
citrix. Based on such a consideration, we assume a
group manager (e.g., the HR director of an organiza-
tion) with an authorized account to act in the role of
“manager” who will be responsible for management
of the system including maintaining the public system
parameters stored in the cloud.

5.5.1 Table Definitions

We assume the cloud uses databases to manage the
necessary information and four database (traditional
or NOSQL databases) tables are thus defined as fol-
lows:
• Table group<groupID, groupName, parameters> is

to store the system parameters.
• Table member<memberID, membeName, password,

publicKey> is to store members’ information in-
cluding their public key.

• Table docs<docID, docName, OwnerID, EncKey,
SEKey, filePath> is to store the uploaded docu-
ment of an owner with identity ownerID.

• Table sharedDocs<SID, memberID, OwnerID, do-
cIDSet> is to store the documents of a member
with identity memberID shared by the owner with
identity OwnerID. Field docIDSet is for all the
indices of documents.

Note that the owner can encrypt the encryption
key and SE key by his/her private key and store the
ciphertexts in the fields EncKey and SEKey. In this way,
he can reduce the cost of key management and only
focus on how to safely store his/her private key.

5.5.2 Work Flows
To further describe this system in details, we de-

scribe its main work flows in this section.
System setup.When an organization submits a re-

quest, the cloud will create a database containing
above four tables, assign a groupID for this organiza-
tion and insert a record into table company. Moreover,
it assigns an administrator account for the manager.
Then, the group data sharing system will work under
the control of manager. To generate the system param-
eters params, manager runs the algorithm KASE.Setup
and updates the field parameters in table company.

User registration. When adding a new member, the
manager assigns memberID, membeName, password and
a key pair generated by any public key encryption
(PKE) scheme for him, then stores the necessary in-
formation into the table member. A user’s private key
should be distributed through a secure channel.

User login. Like most popular data sharing prod-
ucts (e.g., Dropbox and citrix), our system relies on
password verification for authenticating users. To fur-
ther improve the security, multi-factor authentication
or digital signatures may be used when available.

Data uploading. To upload a document, the
owner runs KAE.Encrypt to encrypt the data and
KASE.Encrypt to encrypt the keyword ciphertexts,
then uploads them to the cloud. The cloud assigns
a docID for this document and stores the encrypted
data in the path filePath, then inserts a record into
the table docs. In addition, the owner can encrypt the
keys using his/her private key and store them into
the table docs.

Data sharing. To share a group of documents with
a target member, the owner runs KAE.Extract and

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 10

KASE.Extract to generate the aggregate keys, and
distributes them to this member, then inserts/updates
a record in table sharedDocs. If the shared documents
for this member are changed, the owner must re-
extract the keys and update the field docIDSet in table
sharedDocs.

Keyword Search. To retrieve the documents con-
taining an expected keyword, a member runs
KASE.Trapdoor to generate the keyword trapdoor for
documents shared by each owner, then submits each
trapdoor and the related owner’s identity OwnerID to
the cloud. After receiving the request, for each trap-
door, the cloud will run KASE.Adjust the trapdoor for
each document in the docIDSet and run KASE.Test to
perform keyword search. Then, the cloud will return
the encrypted documents which contains the expected
keyword to the member.

Data retrieving. After receiving the encrypted doc-
ument, the member will run KAE.Decrypt to decrypt
the document using the aggregate key distributed by
the document’s owner.

5.5.3 Analysis
From the work flows above, we can see that the

number of keys of a member is linear in the number
of users who share documents with him, and the
number of trapdoors in a keyword search is the same.
Compared to traditional data sharing solutions, this
system has better efficiency.

6 PERFORMANCE EVALUATION

Considering that: 1) in a practical data sharing sys-
tem based on cloud storage, the user can retrieve data
by any possible device and the mobile devices are
widely used now; 2) the performance is highly depen-
dent on the basic cryptographic operations especially
in the pairing computation, we study whether the
cryptographic operations based on pairing computa-
tion can be efficiently executed using both computers
and mobile devices.

6.1 Implementation Details
In our implementation, two source libraries about

pairing computation are used: 1) jpbc library is used
to implement cryptographic operations running in
mobile smartphones; 2) pbc library is used to imple-
ment cryptographic operations running in computers.
Because the aggregate key and trapdoor contains one
G element, and the keyword ciphertexts only contain
two G∞ elements, we can select the Type-A pairing.
Type-A pairing is the fastest (symmetric) pairing a-
mong all types of curves, which is constructed on the
curve Y 2 = X3 +X over the field Fp for some prime
p=3 mod 4.

Each cryptographic operation involved in our sys-
tem will be evaluated in two different platforms: one
is in Java on Samsung G3502U phone with Android

OS 4.2, the other is in C++ on Computer of Intel(R)
Core(TM)i5-3337U CPU @ 1.80GHZ with Windows7
OS.

6.2 Pairing Computation
About pairing computation, some experiment re-

sults have been published. In mobile devices, Oliveira
et al. [25] show that it needs 5 second in 2007, but now
it will be faster; In sensor nodes and personal digital
assistant (PDA), Li et al. [26] shows that it only needs
1.5 second and 0.5 second respectively in 2010.

TABLE 1
Execution times of type A pairing computation (ms)

Pairing pow(in G) pow(in G1) pow(in Zp)
Mobile Devices 485 243 74 0.8

Computer 10.2 13.3 1.7 0.05

Table.1 shows the average time of pairing computa-
tion (two different elements in G as input, for example,
e(g, h)) is 487ms in mobile device, which has the same
result with the experiments in PDA in [26]. It also
shows the results of execution time of element pow
computation in different groups. In computers, the
average times of pairing and pow computation are
much faster than in mobile devices.

6.3 Evaluation of KASE Algorithms
Considering that the algorithms including

KASE.Setup, KASE.Adjust and KASE.Test are
only run in the cloud server, only the execution times
in computer are tested. As shown in Fig.4, we can
see that:

1) The execution time of KASE.Setup is linear in
the maximum number of documents belonging
to one owner, and when the maximum num-
ber grows up to 20000, it is reasonable that
KASE.Setup algorithm only needs 259 second.

2) The execution time of KASE.Encrypt is linear in
the number of keywords, and when the number
grows up to 10000, KASE.Encrypt algorithm
only needs 206 second in computers, but 10018
second in mobile devices. Therefore, we can draw
two conclusions; one is that it is not feasible to
upload document with lots of keywords using
a mobile phone; the other is that the keyword
search with pairing computation can be execut-
ed quickly in computers now.

3) The execution time of KASE.Extract is linear in
the number of shared documents, and when
the number grows up to 10000, KASE.Extract
algorithm only needs 132 second in comput-
er, but 2430 second in mobile devices. Because
the KASE.Extract always runs along with the
KASE.Encrypt, it is not suggested to be executed
in the mobile devices.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 11

1 10 100 1000 10000

0

50000

100000

150000

200000

250000

T
im

e
co

st
 (

m
s)

Maximum number of documents

 Computer

(a) Time cost of Setup

1 10 100 1000 10000

100

1000

10000

100000

1000000

T
im

e
 c

o
st

 (
m

s)

Number of keywords

 Mobile
 Computer

(b) Time cost of Encrypt

1 10 100 1000 10000
1

10

100

1000

10000

100000

1000000

T
im

e
 c

os
t

(m
s)

Number of shared documents

 Mobile
 Computer

(c) Time cost of Extract

1 10 100 1000 10000
1

10

100

1000

T
im

e
 c

o
st

 (
m

s)

Number of documents

 Mobile
 Computer

(d) Time cost of Trapdoor

1 10 100 1000 10000

10

100

1000

10000

100000

T
im

e
co

st
 (

m
s)

Number of documents

 Computer

(e) Time cost of Adjust

1 10 100 1000 10000
10

100

1000

10000

100000

T
im

e
co

st
 (

m
s)

Number of keyword ciphertexts

 Computer

(f) Time cost of Test

Fig. 4. Time cost of KASE algorithms.

4) The execution time of KASE.Trapdoor is a con-
stant, i.e., 0.01 second in computer and 0.25 sec-
ond in mobile devices. In fact, the mathematical
operation in KASE.Trapdoor is the once multi-
plication in G, so that the keyword search can be
performed efficiently in both mobile devices and
computer. Compared with other schemes, there
is a significant improvement in our scheme.

5) The execution time of KASE.Adjust is linear
in the number of documents. In fact, it can be
improved in the practical application, and the
details are shown in section 6.4.

6) The execution time of KASE.Test is linear in
the number of keyword ciphertexts. In fact, the
mathematical operation in KASE.Test is twice as
much as the pairing computations. When the
number grows up to 20000, it will take 467
second.

6.4 Evaluation of the Group Data Sharing System

Considering that the system’s performances most
critically depend on the KASE algorithms, we consid-
er employing caching techniques in the group data
sharing system to further improve the efficiency of the
keyword search procedure. After receiving an aggre-
gate trapdoor, the cloud server will run KASE.Adjust
and KASE.Test to finish the keyword search.

Fig.4(e) shows that the execution time of
KASE.Adjust is linear in the number of documents.
In fact, to avoid the repeated calculation and improve

1 10 100 1000

1

10

100

1000

10000

100000

1000000

T
im

e
co

st
 (

m
s)

Number of threads

 Time of Test
 Time of thread creation

Fig. 5. Time cost of keyword search.

the performance, the cloud server can cache the
computation result of (S, i, P), where P is the
product Πj∈s,j 6=ign+1−j+i. Because the input and
calculation process are the same for all users, this
will greatly save the calculation time. When the
user queries for the second time, or the same S has
appeared in the past queries, KASE.Adjust can run
quickly by using the pre-computed result.

Fig.4(f) shows that the execution time of KASE.Test
is linear in the number of keyword ciphertexts. To im-
prove the efficiency, some parallel computing and dis-
tributed computing techniques maybe applied, such
as multi-thread, hadoop, etc. The multi-thread tech-
nique is adopted in our experiment. To test the per-

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 12

formance, we set the number of keyword ciphertexts
as 10000. As shown in Fig.5, we can see that the
execution time of KASE.Test will be reduced when
we increase the number of threads. When the number
grows up to 200, it only needs 1 second to finish the
keyword search over 10000 keyword ciphertexts. We
also see that when the number of threads is large, it
would take more time to create these threads. When
the number grows up to 1000, the time of thread
creation will become 80 millisecond. So, the multi-
thread technique can provide the help for improving
performance, but the number of threads should be
selected carefully in the practical applications.

7 CONCLUSION

Considering the practical problem of privacy-
preserving data sharing system based on public cloud
storage which requires a data owner to distribute a
large number of keys to users to enable them to access
his/her documents, we for the first time propose
the concept of key-aggregate searchable encryption
(KASE) and construct a concrete KASE scheme. Both
analysis and evaluation results confirm that our work
can provide an effective solution to building practical
data sharing system based on public cloud storage.

In a KASE scheme, the owner only needs to dis-
tribute a single key to a user when sharing lots of
documents with the user, and the user only needs
to submit a single trapdoor when he queries over
all documents shared by the same owner. However,
if a user wants to query over documents shared by
multiple owners, he must generate multiple trapdoors
to the cloud. How to reduce the number of trapdoors
under multi-owners setting is a future work. More-
over, federated clouds have attracted a lot of attention
nowadays, but our KASE cannot be applied in this
case directly. It is also a future work to provide the
solution for KASE in the case of federated clouds.

ACKNOWLEDGMENTS

This work is supported by the National Key Ba-
sic Research Program of China (No. 2013CB834204),
National Natural Science Foundation of China
(Nos. 61272423, 61300241, 61170268, 61100047 and
61272493), National Natural Science Foundation of
Tianjin (Nos 13JCQNJC00300 and 14JCYBJC15300),
Specialized Research Fund for the Doctoral Program
of Higher Education of China (No. 20120031120036).

REFERENCES

[1] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure,
Scalable, and Fine-Grained Data Access Control in Cloud Com-
puting”, Proc. IEEE INFOCOM, pp. 534-542, 2010.

[2] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure Provenance:
The Essential of Bread and Butter of Data Forensics in Cloud
Computing”, Proc. ACM Symp. Information, Computer and Comm.
Security, pp. 282-292, 2010.

[3] X. Liu, Y. Zhang, B. Wang, and J. Yan. “Mona: secure multi-
owner data sharing for dynamic groups in the cloud”, IEEE
Transactions on Parallel and Distributed Systems, 2013, 24(6): 1182-
1191.

[4] C. Chu, S. Chow, W. Tzeng, et al. “Key-Aggregate Cryptosystem
for Scalable Data Sharing in Cloud Storage”, IEEE Transactions
on Parallel and Distributed Systems, 2014, 25(2): 468-477.

[5] X. Song, D. Wagner, A. Perrig. “Practical techniques for searches
on encrypted data”, IEEE Symposium on Security and Privacy,
IEEE Press, pp. 44C55, 2000.

[6] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky. “Searchable
symmetric encryption: improved definitions and efficient con-
structions”, In: Proceedings of the 13th ACM conference on Com-
puter and Communications Security, ACM Press, pp. 79-88, 2006.

[7] P. Van,S. Sedghi, JM. Doumen. “Computationally efficient
searchable symmetric encryption”, Secure Data Management, pp.
87-100, 2010.

[8] S. Kamara, C. Papamanthou, T. Roeder. “Dynamic searchable
symmetric encryption”, Proceedings of the 2012 ACM conference
on Computer and communications security (CCS), ACM, pp. 965-
976, 2012.

[9] D. Boneh, C. G, R. Ostrovsky, G. Persiano. “Public Key Encryp-
tion with Keyword Search”, EUROCRYPT 2004, pp. 506C522,
2004.

[10] Y. Hwang, P. Lee. “Public Key Encryption with Conjunctive
Keyword Search and Its Extension to a Multi-user System”, In:
Pairing-Based Cryptography C Pairing 2007, LNCS, pp. 2-22, 2007.

[11] J. Li, Q. Wang, C. Wang. “Fuzzy keyword search over encrypt-
ed data in cloud computing”, Proc. IEEE INFOCOM, pp. 1-5,
2010.

[12] C. Bosch, R. Brinkma, P. Hartel. “Conjunctive wildcard search
over encrypted data”, Secure Data Management. LNCS, pp. 114-
127, 2011.

[13] C. Dong, G. Russello, N. Dulay. “Shared and searchable en-
crypted data for untrusted servers”, Journal of Computer Security,
pp. 367-397, 2011.

[14] F. Zhao, T. Nishide, K. Sakurai. Multi-User Keyword Search
Scheme for Secure Data Sharing with Fine-Grained Access
Control. Information Security and Cryptology, LNCS, pp. 406-418,
2012.

[15] J. W. Li, J. Li, X. F. Chen, et al. “Efficient Keyword Search over
Encrypted Data with Fine-Grained Access Control in Hybrid
Cloud”, In: Network and System Security 2012, LNCS, pp. 490-
502, 2012.

[16] J. Li, K. Kim. “Hidden attribute-based signatures without
anonymity revocation”, Information Sciences, 180(9): 1681-1689,
Elsevier, 2010.

[17] X.F. Chen, J. Li, X.Y. Huang, J.W. Li, Y. Xiang.
“Secure Outsourced Attribute-based Signatures”,
IEEE Trans. on Parallel and Distributed Systems,
DOI.ieeecomputersociety.org/10.1109/TPDS.2013.180, 2013.

[18] J.Li, X.F. Chen, M.Q. Li, J.W. Li, P. Lee, Wenjing Lou. “Secure
Deduplication with Efficient and Reliable Convergent Key Man-
agement”, IEEE Transactions on Parallel and Distributed Systems,
25(6): 1615-1625, 2014.

[19] Z. Liu, Z. Wang, X. Cheng, et al. “Multi-user Searchable
Encryption with Coarser-Grained Access Control in Hybrid
Cloud”, Fourth International Conference on Emerging Intelligent
Data and Web Technologies (EIDWT), IEEE, pp. 249-255, 2013.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Comput-
ing”, Proc. IEEE INFOCOM, pp. 525-533, 2010.

[21] B. Wang, B. Li, and H. Li, “Knox: Privacy-Preserving Auditing
for Shared Data with Large Groups in the Cloud”, Proc. 10th
Int’l Conf. Applied Cryptography and Network Security, pp. 507-
525, 2012.

[22] D. Boneh, C. Gentry, B. Waters.“ Collusion resistant broadcast
encryption with short ciphertexts and private keys”, Advances
in CryptologyCCRYPTO 2005, pp. 258-275, 2005.

[23] D. H. Phan, D. Pointcheval, S. F. Shahandashti, et al. “Adaptive
CCA broadcast encryption with constant-size secret keys and
ciphertexts”, International journal of information security, 12(4):
251-265, 2013.

[24] D. Boneh, B. Lynn, H. Shacham. “Short signatures from the
Weil pairing”, Advances in Cryptology ASIACRYPT 2001, pp. 514-
532, 2001.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2389959, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. 6, NO. 1, JANUARY 2014 13

[25] L. B. Oliveira, D. F. Aranha, E. Morais, et al. “Tinytate: Com-
puting the tate pairing in resource-constrained sensor nodes”,
IEEE Sixth IEEE International Symposium on Network Computing
and Applications, pp. 318-323, 2007.

[26] M. Li, W. Lou, K. Ren. “Data security and privacy in wireless
body area networks”, Wireless Communications, IEEE, 17(1): 51-
58, 2010.

[27] D. Boneh, C. Gentry and B. Waters. “Collusion Resistant
Broadcast Encryption with Short Ciphertexts and Private Keys”,
CRYPTO’05, pp. 258C275, 2005.

[28] R. A. Popa ,N. Zeldovich. “Multi-key searchable encryption”.
Cryptology ePrint Archive, Report 2013/508, 2013.

Baojiang Cui recieved B.S. in Hebei Univer-
sity of Technology, China, in 1994, M.S. in
Harbin Institute of Technology, China, in 1998
and Ph.D. in Control Theory and Control En-
gineering in Naikai University, China in 2014.
He is an Associate Professor in the School
of Computer Science at Beijing University of
Posts and Telecommunications, China. His
main research area are detection of software,
cloud computing and the Internet of Things.

Zheli Liu received the BSc and MSc degrees
in computer science from Jilin University,
China, in 2002 and 2005, respectively. He
received the PhD degree in computer appli-
cation from Jilin University in 2009. After a
postdoctoral fellowship in Nankai University,
he joined the College of Computer and Con-
trol Engineering of Nankai University in 2011.
His current research interests include applied
cryptography and data privacy protection.

Lingyu Wang is an associate professor in
the Concordia Institute for Information Sys-
tems Engineering (CIISE) at Concordia U-
niversity, Montreal, Quebec, Canada. He re-
ceived his Ph.D. degree in Information Tech-
nology in 2006 from George Mason Univer-
sity. He holds a M.E. from Shanghai Jiao
Tong University and a B.E. from Shenyang
Aerospace University in China. His research
interests include data privacy, network secu-
rity, security metrics, cloud computing securi-

ty, and software security. He has co-authored over 90 peer-reviewed
scientific publications on security and privacy. He has served as the
program co-chair of six international conferences, the panelist of
National Science Foundation, and the technical program committee
member of over 80 international conferences.

